VERSION ACTUAL :

Inicio de sesión

Raulito el Friki

Raulito El Friki

COMENTARIOS

EN LINEA

Hay actualmente 0 usuarios conectados.

NUEVOS

  • upszot
  • alcabrejas
  • Richie_7o3
  • duvg
  • bpantoja

Se encuentra usted aquí

Gaussianos

Suscribirse a canal de noticias Gaussianos
Porque todo tiende a infinito...
Actualizado: hace 4 horas 29 mins

“La resolución de la cúbica: una historia llena de historias”, artículo de la semana pasada en “El Aleph”

Jue, 02/09/2017 - 11:30

El pasado miércoles 1 de febrero publiqué un nuevo artículo en El Aleph, mi blog de matemáticas en El País, en el que hablé sobre la historia de la resolución de la cúbica.

La resolución de la cúbica: una historia llena de historias

Unos de los temas relacionados con matemáticas que se tratan durante nuestra vida académica es el de la resolución de ecuaciones. Aprendemos a resolver muchos tipos (exponenciales, logarítmicas, racionales, trigonométricas…), pero analizando los métodos de resolución podemos concluir que muchas de ellas se reducen a resolver una ecuación polinómica. Por tanto, los métodos de resolución de estas ecuaciones polinómicas tienen una gran importancia dentro de esta parte de nuestra formación matemática.

Os dejo también el enlace a la página de Gaussianos en la que voy recopilando todos los artículos que he publicado en El Aleph, por si os habéis perdido alguno y queréis leerlo. Como sabéis, el día de publicación habitual es el miércoles. Muchas gracias a todos.

“El grafo adivinador de la letra del DNI”, nuevo artículo en “El Aleph”

Dom, 01/29/2017 - 14:33

El pasado miércoles 25 de enero publiqué un nuevo artículo en El Aleph, mi blog de matemáticas en El País, en el que escribo sobre la relación entre los grafos y la letra del DNI.

El grafo adivinador de la letra del DNI

En más de una ocasión he hablado con gente sobre si saben cómo se asigna la letra del DNI, y en la mayoría de los casos he recibido la misma respuesta: no lo sé. Casi todos me acaban diciendo que piensan que podría ser una asignación al azar, aunque en ocasiones (pocas) me he encontrado con gente que cree que debe haber una especie de fórmula que se encargue de esta tarea. La realidad es que son estos últimos quienes están en lo cierto. En el presente artículo vamos a hablar sobre cómo se hace este cálculo de la letra del DNI y también explicaremos cómo construir un grafo adivinador de la letra del DNI.

Os dejo también el enlace a la página de Gaussianos en la que voy recopilando todos los artículos que he publicado en El Aleph, por si os habéis perdido alguno y queréis leerlo. Como sabéis, el día de publicación habitual es el miércoles. Muchas gracias a todos.

Esta entrada participa en la Edición 7.X del Carnaval de Matemáticas, que en esta ocasión organiza el blog del IMUS..

“¿Es muy difícil (estadísticamente) no dar ni una?”, nuevo artículo en “El Aleph”

Vie, 01/20/2017 - 07:35

Este miércoles 18 de enero publiqué un nuevo artículo en El Aleph, mi blog de matemáticas en El País, en el que trato el tema de la probabilidad de tener que repetir un sorteo en el amigo invisible.

¿Es muy difícil (estadísticamente) no dar ni una?

El conocido como amigo invisible es un “juego” muy popular en grupos de amigos, familiares o compañeros de trabajos, sobre todo en épocas como la recientemente terminada Navidad. Aunque imagino que no habrá nadie que no sepa en qué consiste, creo que conviene recordar su funcionamiento:

Se escriben en papelitos los nombres de todos los participantes y se mezclan dichos papelitos. Después, cada participante escoge al azar uno de ellos y debe hacer un regalo a la persona cuyo nombre aparece en él. Si alguien coge el papel que tiene su propio nombre, el sorteo se repite.

Hoy vamos a hablar precisamente sobre esto último, sobre cuál es la probabilidad de que el sorteo no se tenga que repetir. Es decir, vamos a hablar sobre la probabilidad de que en el primer sorteo no haya nadie que coja el papelito con su propio nombre, sobre la probabilidad de que nadie “acierte” con su nombre. Antes de seguir, quizás sea interesante que penséis sobre cuál podría ser dicha probabilidad. Intentadlo, haced un pequeño ejercicio mental y pensad sobre ello.

Os dejo también el enlace a la página de Gaussianos en la que voy recopilando todos los artículos que he publicado en El Aleph, por si os habéis perdido alguno y queréis leerlo. Como sabéis, el día de publicación habitual es el miércoles. Muchas gracias a todos.

“Pelos, saludos y palomas”, nuevo artículo en “El Aleph”

Mar, 01/17/2017 - 06:30

La pasada semana, concretamente el miércoles 11 de enero, publiqué un nuevo artículo en El Aleph, mi blog de matemáticas en El País. En él hablo sobre el principio del palomar.

Pelos, saludos y palomas

¿Hay en España dos personas que tengan exactamente el mismo número de pelos en la cabeza? Esta extraña pregunta, y otras más o menos curiosas, pueden responderse utilizando un resultado matemático que destaca por su extremada sencillez: el principio del palomar.

Os dejo también el enlace a la página de Gaussianos en la que voy recopilando todos los artículos que he publicado en El Aleph, por si os habéis perdido alguno y queréis leerlo. Como sabéis, el día de publicación habitual es el miércoles. Muchas gracias a todos.

“¿Por qué las antenas parabólicas son parabólicas?”, artículo de la semana pasada en “El Aleph”

Dom, 01/15/2017 - 15:00

La semana pasada, el miércoles 4 de enero, publiqué un nuevo artículo en El Aleph, mi blog de matemáticas en El País. En él hablo sobre las matemáticas de las antenas parabólicas.

¿Por qué las antenas parabólicas son parabólicas?

En ocasiones, los estudios y trabajos matemáticos se consideran innecesarios, prescindibles o una pérdida de tiempo aludiendo, principalmente, falta de utilidad o nulas aplicaciones prácticas de los mismos. Hoy, en este artículo, os traigo un caso que ejemplifica que estos estudios son necesarios, aunque en un principio no se les vea aplicación práctica, ya que nunca se sabe cuándo ni dónde podremos encontrarles utilidad: las antenas parabólicas. Su forma no alude a una cuestión estética ni a un capricho de algún fabricante, sino que responde a una cuestión meramente matemática, que concretamente usa de forma muy inteligente una propiedad de las parábolas conocida desde hace casi 2000 años.

Os dejo también el enlace a la página de Gaussianos en la que voy recopilando todos los artículos que he publicado en El Aleph, por si os habéis perdido alguno y queréis leerlo. Como sabéis, el día de publicación habitual es el miércoles. Muchas gracias a todos.

Representando números con los dígitos del 1 al 9 “like a boss”

Jue, 01/12/2017 - 06:30

Tienes a tu disposición los números 1, 2, 3, 4, 5, 6, 7, 8 y 9 y las operaciones suma, resta, multiplicación, división y potenciación. También puedes usar paréntesis y concatenar números (por ejemplo, puedes escribir 34). Puedes usar todas las operaciones o sólo algunas, pero estás obligado a usar todos los números. Con estas normas, ¿cuántos números enteros positivos serías capaz de representar?

Por ejemplo, ¿sabrías representar el 1371? Piénsalo, prueba, y después baja un poco…

.
.
.
.
.
.
.
.
.
.

…¿ya? Aquí tienes una opción:

1371=18+435 \cdot 2+69 \cdot 7

Si habéis probado durante un rato, igual habéis encontrado otras opciones. Aquí os presento dos más:

\begin{matrix} 1371=12 \cdot (3+45)+6+789 \\ \\ 1371=9 \cdot 8+7+6 \cdot 5 \cdot 43+2 \cdot 1 \end{matrix}

Estas dos posibilidades tienen, cada una de ellas, una característica que no tiene la anterior. La primera utiliza los números disponibles en orden ascendente, y la segunda los usa en orden descendente. Por poner otro ejemplo, aquí tenéis las representaciones ascendente y descendente para el año 2017 que acabamos de empezar:

\begin{matrix} 2017=12^3+4 \cdot 56+7 \cdot 8+9 \\ \\ 2017=98+7 \cdot 6+5^4 \cdot 3 +2 \cdot 1 \end{matrix}

¿Se podrá hacer esto con todos los enteros positivos, digamos, hasta el 1000? ¿Y hasta el 10000? ¿Se podrá hacer con todos los enteros positivos o habrá alguno para el que no se pueda? ¿Existirá alguien en nuestro planeta que tenga tiempo y ganas para ir buscando este tipo de representaciones número a número?

Para esta última pregunta tenemos respuesta: Inder J. Taneja, profesor de matemáticas de la Universidade Federal de Santa Catarina, en Brasil. El señor Taneja ha encontrado representaciones ascendentes y descendentes de la forma comentada antes para todos los números enteros desde el 0 hasta el 11111. El trabajo en el que se puede ver todas estas representaciones está disponible en arXiv: Crazy Sequential Representation: Numbers from 0 to 11111 in terms of Increasing and Decreasing Orders of 1 to 9 (es su quinto trabajo relacionado con este tema). Aquí tenéis una captura de una de las páginas del mismo:

Hace un momento os he dicho que Taneja ha representado así todos los enteros desde el 0 hasta el 11111, pero en realidad esto no es cierto: hay uno que se le ha resistido. Más concretamente, no ha encontrado representación ascendente para el 10958, aunque sí ha encontrado la descendente:

10958=(9+8 \cdot 7 \cdot 65+4) \cdot 3-2+1

Por otra parte, en su trabajo también señala que hay 8 números para los cuales ha necesitado utilizar la división:

\begin{matrix} 9668=-9-8-(7-6^5/4) \cdot (3+2) \cdot 1 \\ \\ 9686=9-8-(7-6^5/4) \cdot (3+2) \cdot 1 \\ \\ 9986=(12+3)^4/5-67-8 \cdot 9 \\ \\ 10084=(12+3)^4/5+6-7 \cdot 8+9 \\ \\ 10121=(12+3)^4/5+6+7-8-9 \\ \\ 10802=(9 \cdot (8-(7-6)^5)^4-3)/2-1 \\ \\ 11027=-1 \cdot 2 +(3 \cdot 4 \cdot 5^6-7)/(8+9) \\ \\ 11038=(9 \cdot 8 \cdot 7 +6^5) \cdot 4/3-2 \cdot 1 \end{matrix}

¿Se podrá encontrar alguna representación ascendente para el 10958? ¿Existirán representaciones de los 8 números anteriores que no necesiten a la división? Ya tenemos entretenimiento, a ver si sale algo y ayudamos así a Inder Taneja.

Queda en el aire la pregunta de si todos los enteros positivos pueden representarse de esta manera. Yo no tengo respuesta a dicha pregunta, y no sé si alguien la tendrá, ya sea en la actualidad o en algún momento del futuro. Si alguien tiene más información sobre este tema que nos lo cuente en los comentarios.

Me enteré de esto por esta entrada de Futility Closet.

Páginas